viernes, 22 de abril de 2016

Presentación

Deimer Rafael Escobar Caraballo


Jose Gregorio Hernandez Vital

Undécimo Grado 


Ing. Mario Dajer


INSTITUCION EDUCATIVA SAN PEDRO CLAVER


2016


Concepto de robótica


La Robótica es una ciencia o rama de la tecnología, que estudia el diseño y construcción de máquinas capaces de desempeñar tareas realizadas por el ser humano o que requieren del uso de inteligencia. Las ciencias y tecnologías de las que deriva podrían ser: el álgebra, los autómatas programables, las máquinas de estados, la mecánica o la informática.
De forma general, la Robótica se define como: El conjunto de conocimientos teóricos y prácticos que permiten concebir, realizar y automatizar sistemas basados en estructuras mecánicas poli articuladas, dotados de un determinado grado de "inteligencia" y destinados a la producción industrial o al sustitución del hombre en muy diversas tareas.
Un sistema Robótico se puede describirse, como "Aquel que es capaz de recibir información, de comprender su entorno a través del empleo de modelos, de formular y de ejecutar planes, y de controlar o supervisar su operación". La Robótica es esencialmente pluridisciplinaria y se apoya en gran medida en los progresos de la microelectrónica y de la informática, así como en los de nuevas disciplinas tales como el reconocimiento de patrones y de inteligencia artificial.
La historia de la Robótica ha estado unida a la construcción de "artefactos", muchas veces por obra de genios autodidactas que trataban de materializar el deseo humano de crear seres semejantes a nosotros que nos descargasen del trabajo. El ingeniero español Leonardo Torres Quevedo (que construyó el primer mando a distancia para su torpedo automóvil mediante telegrafía sin hilodrecista automático, el primer trasbordador aéreo y otros muchos ingenios) acuñó el término "automática" en relación con la teoría de la automatización de tareas tradicionalmente asociadas a los humanos.
Si algún autor ha influido sobre manera en la concepción del universo de los robots de ficción, éste ha sido sin duda alguna Isaac Asimos. Muchos otros, desde luego, han escrito sobre robots, pero ninguno ha relatado tan minuciosamente las actitudes y posibilidades de estas máquinas como lo ha hecho él.
Tanto es así, que el Oxford English Dictionary reconoce a Asimos como inventor de la palabra "robótica" y, aunque todos conocemos la facilidad de los anglófonos para inventar palabras nuevas, no por ello tiene mucho mérito.
Cuando tenía 22 años, Asimos escribió su cuarto relato corto sobre robots. El círculo vicioso. En boca de unos de sus personajes planteó lo que consideraba axiomas básicos para el funcionamiento de un robot. Los llamó las Tres reglas fundamental de la robótica y dicen así:
Ningún robot puede hacer daño a un ser humano, o permitir que se le haga daño por no actuar.
Un robot debe obedecer las órdenes dadas por un ser humano, excepto si éstas órdenes entran en conflicto con la primera ley.
Un robot debe proteger su propia existencia en la medida en que está protección no sea incompatible con las leyes anteriores.
En definitiva, las famosas leyes de Asimos son aplicables a un universo donde los robots son seres inteligentes, pero quedan relegadas a una cartilla de parvulario al enfrentarse con la dura realidad. Pero esto son sólo anécdotas.


Historia De La Robotica

Historia de las tres leyes de robótica
Los primeros Robots construidos, en la tierra, eran modelos poco avanzados. Era una época en donde la Robopsicología no estaba muy bien desarrollada. Estos Robots podían ser enfrentados a situaciones en las cuales se vieran en un conflicto con sus leyes. Una de las situaciones más sencillas se da cuando un Robot debe dañar a un ser humano para evitar que dos o más sufran daño. Aquí los Robots decidían en función de un criterio exclusivamente cuantitativo, quedando luego inutilizados, al verse forzados a violar la primera ley.
Posteriores desarrollos en la Robótica, permitieron la construcción de circuitos más complejos, y por ende, con una mayor capacidad de autorreflexión. Una peculiaridad de los Robots es que pueden llegar a redefinir su concepto de "daño" según sus experiencias e incluso, llegar a determinar niveles de éste. Su valoración de los seres humanos también puede ser determinada por el ambiente.
Es así que un Robot puede llegar a dañar a un ser humano por proteger a otro que considere de más valía (su amo por ejemplo). También podría darse el caso de que un Robot dañara físicamente a un ser humano para evitar que otro sea dañado psicológicamente, pues llega a ser una tendencia el considerar los daños psicológicos más graves que los físicos.
Estas situaciones nunca se hubieran dado en Robots más antiguos. Asimov plantea en sus historias de Robots las más diversas situaciones, siempre considerando las posibilidades lógicas que podrían llevar a los Robots a tales situaciones.
Uno puede llegar a encariñarse con los Robots de Asimov, él que nos muestra en sus historias Robots cada vez más "humanos". En El hombre bicentenario, Asimov nos narra la historia de Andrew Martín, nacido Robot, y que luego de una vida de lucha, logró morir como un ser humano. Están también R. Daneel Olivaw y R. Giskard Reventlov, los cuales tienen un papel fundamental en la segunda expansión de los seres humanos y la posterior fundación del imperio galáctico. Estos dos personajes son importantes en la medida en que, siendo los Robots más complejos jamás creados, fueron capaces de desarrollar la ley cero de la Robótica (Zeroth law):
"Un Robot no puede hacer daño a la humanidad o, por inacción, permitir que la humanidad sufra daño."
Se supone que la Ley Cero sería el resultado de la reflexión filosófica por parte de estos Robots más sofisticados.
R Giskard muere luego de tener que dañar a un ser humano en virtud de la ley cero. El problema fundamental de esta ley está en el problema para definir "humanidad", así como para determinar qué "daña" a la humanidad. R. Daneel logró asimilar la ley cero gracias al sacrificio de Giskard, convirtiéndose desde entonces en el protector de la humanidad. Daneel se convierte en uno de los personajes más importantes del ciclo de Trántor (formado por los cuentos y novelas de Robots, las novelas del imperio, y la saga de las fundaciones: 17 libros) siendo además el punto que le da continuidad.
La Robótica abre una nueva y decisiva etapa en el actual proceso de mecanización y automatización creciente de los procesos de producción. Consiste esencialmente en la sustitución de máquinas o sistemas automáticos que realizan operaciones concretas, por dispositivos mecánicos que realizan operaciones concretas, por dispositivos mecánicos de uso general, dotados de varios grados de libertad en sus movimientos y capaces de adaptarse a la automatización de un número muy variado de procesos y operaciones.
La Robótica se ha caracterizado por el desarrollo de sistemas cada vez más flexibles, versátiles y polivalentes, mediante la utilización de nuevas estructuras mecánicas y de nuevos métodos de control y percepción.
La Robótica ha alcanzado un nivel de madurez bastante elevado en los últimos tiempos, y cuenta con un correcto aparato teórico. Sin embargo, algunas cosas que para los humanos son muy sencillas, como andar, correr o coger un objeto sin romperlo, requieren una potencia de cálculo para igualarlas que no esta disponible todavía.
Sin embargo se espera que el continuo aumento de la potencia de los ordenadores y las investigaciones en inteligencia artificial, visión artificial y otras ciencias paralelas nos permitan acércanos un poco más cada vez a los milagros soñados por los primeros ingenieros y también a los peligros que nos adelanta la ciencia ficción.


 La prehistoria
La palabra Robot surge con la obra RUR, los "Robots Universales de Rossum" de Carel Capee, es una palabra checoslovaca que significa trabajador, sirviente. Sin embargo podemos encontrar en casi todos los mitos de las diversas culturas una referencia a la posibilidad de crear un ente con inteligencia, desde el Popol-Vuh de nuestros antepasados mayas hasta el Golem del judaísmo.
Desde la época de los griegos se intentó crear dispositivos que tuvieran un movimiento sin fin, que no fuera controlado ni supervisado por personas, en los siglos XVII y XVIII la construcción de autómatas humanoides fabricados con mecanismos de relojería por Jacques de Vaucanson, Pierre Henri-Louis, Jaquet- Droz, como el escribiente, the Draughtsman, el músico Henri Maillar det (1800), Olimpia de la ópera de Offenback de Hoffman, fortalecieron la búsqueda de mecanismos que auxiliaran a los hombres en sus tareas.
Estos autómatas desataron controversias alrededor de la posible inteligencia que pudieran tener estos dispositivos pesadas y en la búsqueda de la posibilidad de crear vida artificialmente. El escribiente hacía mofa de la frase de Descartes de "Pienso luego existo parafraseándola al escribir "Escribo luego existo". Los fraudes surgieron como en el caso del ajedrecista, en el que un muñeco mecánico daba respuesta a jugadas de ajedrez, comprobándose más tarde que era un enano encerrado en la caja del muñeco el que daba las respuestas y movía el muñeco. Todos estos mitos anteceden a la obra Kapec, en la que se plantea la construcción de Robots para liberar a las personas de la carga pesada de trabajo. Sin embargo, esta ficción y la creada por Asimov, junto con los desarrollos mecánicos de máquinas como el telar de Thaillard, motiva a George Devol a crear el origen de los Robots industriales, un manipulador que sería parte de una célula de trabajo.

Desarrollo histórico
Desde los primeros autómatas hasa las sondas espaciales han pasado varios siglos, pero al hablar de inteligencia sólo podremos mirars unos treinta años atrás. Han sido pocos años, pero muy intensos y el interés que ha despertado en todo el mundo es superior a cualquier previsión que se pudiera formular en su nacimiento y concepción inicial, siguiendo un proceso paralelo a la introducción de las computadoras en las actividades cotidianas de la vida humana, aunque si bien los Robots todavía no han encontrado la forma de inserción en los hogares pero sí son un elemento ya imprescindible en la mayoría de las industrias.
Podemos contemplar la Robótica como una ciencia que, aunque en ella se han conseguido grandes avances, ofrece aun un amplio campo para el desarrollo y la innovación tecnológica y es precisamente este aspecto el que motiva a muchos investigadores y aficionados a los Robots a seguir adelante planteando Robots cada vez mas evolucionados y complejos.
Los aficionados a los Robots también juegan un papel muy importante en el desarrollo de la Robótica, ya que son éstos los que, partiendo de una afición firme, con sus particulares ideas y al cabo de un cierto tiempo de pruebas y progresos, han podido desarrollar sus teorías y, con ello, crear precedentes o mejorar aspectos olvidados, así como solucionar problemas no previstos inicialmente.


Definición de robot

Definición de robot
Dar una definición concreta de robot no es sencillo. Resulta tan complicado como intentar definir por ejemplo, la diversión o el aburrimiento; se conoce si algo es divertido o aburrido, pero es largo explicarlo con palabras.
Un Robot es un dispositivo generalmente mecánico, que desempeña tareas automáticamente, ya sea de acuerdo a supervisión humana directa, a través de un programa predefinido o siguiendo un conjunto de reglas generales, utilizando técnicas de inteligencia artificial. Generalmente estas tareas reemplazan, asemejan o extienden el trabajo humano, como ensamble en líneas de manufactura, manipulación de objetos pesados o peligrosos, trabajo en el espacio, etc.
Un Robot también se puede definir como una entidad hecha por el hombre con un cuerpo y una conexión de retroalimentación inteligente entre el sentido y la acción (no bajo la acción directa del control humano). Usualmente, la inteligencia es una computadora o un microcontrolador ejecutando un programa. Sin embargo, se ha avanzado mucho en el campo de los Robots con inteligencia alámbrica. Las acciones de este tipo de Robots son generalmente llevadas a cabo por motores o actuadores que mueven extremidades o impulsan al Robot.
La RIA (Robot Industries Association) lo define así: un robot es un manipulador reprogramable y multifuncional, diseñado para mover cargas, piezas, herramientas o dispositivos especiales, según trayectorias variadas y programadas. En resumen se puede decir:
* Su característica fundamental es poder manejar objetos (o sea, manupulador). Un robot se diseña con este fin, teniendo en cuenta que ha de ser muy versátil a la hora de utilizar herramientas y manejarlas.
* La segunda pecularidad que a diferencia de otras máquinas automáticas es su capacidad para realizar trabajos completamente diferentes adaptándose al medio, e incluso pudiendo tomar decisiones. A eso es a lo que se refiere lo de multifuncional y reprogramable.
Los Web bots son conocidos como Robots, pero existen solamente en código, y se mueven a través de páginas Web obteniendo información. Tales entidades son normalmente llamadas agentes de software para ser distinguidos de un Robot que posee cuerpo.
Esta definición está muy abierta, ya que hasta una secadora de cabello satisface este criterio. Por lo tanto, los robotistas han extendido la definición añadiendo el criterio de que los Robots deben ser entidades que lleven a cabo más de una acción. Por lo tanto, las secadoras de cabello y entidades similares de una sola función son reducidas a una Control de problemas.
Así mismo, el término Robot ha sido utilizado como un término general que define a un hombre mecánico o autómata, que imita a un animal ya sea real o imaginario, pero se ha venido aplicado a muchas máquinas que reemplazan directamente a un humano o animal en el trabajo o el juego. Esta definición podría implicar que un Robot es una forma de biomimetismo.






Clasificación de los robots según su arquitectura

La arquitectura, es definida por el tipo de configuración general del Robot, puede se metamórfica. El concepto de metamorfismo, de reciente aparición, se ha introducido para incrementar la flexibilidad funcional de un Robot a través del cambio de su configuración por el propio Robot. El metamorfismo admite diversos niveles, desde los más elementales (cambio de herramienta o de efecto terminal), hasta los más complejos como el cambio o alteración de algunos de sus elementos o subsistemas estructurales.
Los dispositivos y mecanismos que pueden agruparse bajo la denominación genérica del Robot, tal como se ha indicado, son muy diversos y es por tanto difícil establecer una clasificación coherente de los mismos que resista un análisis crítico y riguroso. La subdivisión de los Robots, con base en su arquitectura, se hace en los siguientes grupos: Poliarticulados, Móviles, Androides, Zoomórficos e Híbridos.

Poliarticulados
Bajo este grupo están los Robots de muy diversa forma y configuración cuya característica común es la de ser básicamente sedentarios (aunque excepcionalmente pueden ser guiados para efectuar desplazamientos limitados) y estar estructurados para mover sus elementos terminales en un determinado espacio de trabajo según uno o más sistemas de coordenadas y con un número limitado de grados de libertad". En este grupo se encuentran los manipuladores, los Robots industriales, los Robots cartesianos y se emplean cuando es preciso abarcar una zona de trabajo relativamente amplia o alargada, actuar sobre objetos con un plano de simetría vertical o reducir el espacio ocupado en el suelo.

Moviles
Son Robots con grandes capacidad de desplazamiento, basados en carros o plataformas y dotados de un sistema locomotor de tipo rodante. Siguen su camino por telemando o guiándose por la información recibida de su entorno a través de sus sensores. Las tortugas motorizadas diseñadas en los años cincuentas, fueron las precursoras y sirvieron de base a los estudios sobre inteligencia artificial desarrollados entre 1965 y 1973 en la Universidad de Stranford.
Estos Robots aseguran el transporte de piezas de un punto a otro de una cadena de fabricación. Guiados mediante pistas materializadas a través de la radiación electromagnética de circuitos empotrados en el suelo, o a través de bandas detectadas fotoeléctricamente, pueden incluso llegar a sortear obstáculos y están dotados de un nivel relativamente elevado de inteligencia.

Androides
Son Robots que intentan reproducir total o parcialmente la forma y el comportamiento cinemática del ser humano. Actualmente los androides son todavía dispositivos muy poco evolucionados y sin utilidad práctica, y destinados, fundamentalmente, al estudio y experimentación.
Uno de los aspectos más complejos de estos Robots, y sobre el que se centra la mayoría de los trabajos, es el de la locomoción bípeda. En este caso, el principal problema es controlar dinámica y coordinadamente en el tiempo real el proceso y mantener simultáneamente el equilibrio del Robot.
Zoomorficos
Los Robots zoomórficos, que considerados en sentido no restrictivo podrían incluir también a los androides, constituyen una clase caracterizada principalmente por sus sistemas de locomoción que imitan a los diversos seres vivos.
A pesar de la disparidad morfológica de sus posibles sistemas de locomoción es conveniente agrupar a los Robots zoomórficos en dos categorías principales: caminadores y no caminadores. El grupo de los Robots zoomórficos no caminadores está muy poco evolucionado. Cabe destacar, entre otros, los experimentados efectuados en Japón basados en segmentos cilíndricos biselados acoplados axialmente entre sí y dotados de un movimiento relativo de rotación. En cambio, los Robots zoomórficos caminadores multípedos son muy numeroso y están siendo experimentados en diversos laboratorios con vistas al desarrollo posterior de verdaderos vehículos terrenos, piloteando o autónomos, capaces de evolucionar en superficies muy accidentadas. Las aplicaciones de estos Robots serán interesantes en el campo de la exploración espacial y en el estudio de los volcanes.

Hibridos
Estos Robots corresponden a aquellos de difícil clasificación cuya estructura se sitúa en combinación con alguna de las anteriores ya expuestas, bien sea por conjunción o por yuxtaposición. Por ejemplo, un dispositivo segmentado articulado y con ruedas, es al mismo tiempo uno de los atributos de los Robots móviles y de los Robots zoomórficos.
De igual forma pueden considerarse híbridos algunos Robots formados por la yuxtaposición de un cuerpo formado por un carro móvil y de un brazo semejante al de los Robots industriales.
En parecida situación se encuentran algunos Robots antropomorfos y que no pueden clasificarse ni como móviles ni como androides, tal es el caso de los Robots personales.
Las características con las que se clasifican principalmente
Propósito o función
Sistema de coordenadas empleado
Número de grados de libertad del efecto formal
Generación del sistema control.



La fuerza y movimiento del robot


Aunque C3PO tenía dos brazos y dos piernas y casi podía correr, nuestros robots actuales no tienen tanta suerte. Generalmente están formados por un brazo que utilizan para manejar las herramientas.
Este brazo y sus herramientas son movidos por dispositivos denominados actuadotes, que pueden ser de origen eléctrico,neumático o bien hidráulico.
8.1 El brazo o manipulador
La estructura mecánica del manipulador puede ser tan variada como los fabricantes que las hacen. Pero generalmente se pueden distinguir cuatro partes principales en el manipulador: el pedestal, el cuerpo, el brazo y el antebrazo. (Ilustración 8).
Las articulaciones entre las distintas partes rígidas del brazo pueden ser giratorias (como las del brazo humano) o deslizantes (si hay traslación de las partes). El número de elementos del brazo y sus articulaciones determinan una característica propia de cada robot. Al número de movimientos espaciales independientes entre sí se le denomina grados de libertad.
8.2 Campo de acción
Debido a la estructura de las articulaciones y al número de ellas existente, el brazo del robot puede llegar a alcanzar ciertos puntos del espacio, pero nunca todos. Al conjunto de los puntos del espacio que el robot puede alcanzar con su herramienta se le denomina campo de acción, y es una característica propia de cada robot.
Los fabricantes nos ofrecen en sus catálogos todo un montón de dibujitos en los que podemos ver las zonas que el robot alcanza y las que no.
8.3 Más características
Hay otras tres características que definen la calidad del movimiento de un robot:
Resolución (o precisión). Es el mínimo movimiento que puede realizar el robt expresado en milímetros.
Repetitividad. Es una medida estadística del error que comete un robot al colocarse repetidas veces en un mismo punto.
Exactitud. Es una medida de la distancia que hay entre el punto donde se ha colocado el extremo del brazo y el punto real donde debería haberlo hecho.
9. El sistema nervioso
Al igual que nuestro cerebro envía impulsos nerviosos a nuestros músculos para que éstos se muevan, el robot requiere que una computadora central decida qué pasos hay que seguir para llevar a cabo una tarea concreta.
La espina dorsal del robot son los reguladores. Dependiendo del actuador utilizado, el control se realizará a través de un programa o bien mediante programa y circuitos a la vez.
9.1 La función de los reguladores
La misión de los actuadotes es alcanzar un estado determinado cuya referencia le viene impuesta por la unidad de control. Ese estado puede ser bien alcanzar una posición determinada, o bien adquirir cierta velocidad. Si son actuadotes eléctricos (motores) esto se hará girando. Si son hidráulicos o neumáticos, se enviará mayor o menor presión al fluido compresor.
Al controlador principal le interesa que su orden se cumpla exactamente y en el menor tiempo posible, sin que tenga necesidad de ocuparse de ello. Y ésta es la misión de los reguladores.
10. El mercado de los robots
Ya puedes imaginarte que elegir un robot no es como ir al supermercado y meter en la cesta un kilo de peras. Es necesario conocer a la perfeccion el tipo de aplicaciones donde se van a emplear el robot y cuales han de ser sus caracteristicas.
Campo de acción, grados de libertad, presición, repetitividad, velocidad de movimientos, fuerza, lenguajes de programación, tipos de accionamentos, capacidad de comunicación, mantenimiento y coste son algunas de las caracteristicas con las quenos obsequia un fabricante cuando le pedimos un catalogo. La elección no es fácil.
10.1 Unimation
Americana y fundadora por J. Engerber a principios de los 60, fue la empresa pionera en fabricación de robots industriales.
Los robots mas importantes patentados por Unimation han sido:
Unimate. Es un robot hidraulico, de estructura espacial de tipo polar, que en su version frande (Unimate 4000) es utilizado sobre todo en forja, fundicion y soldadura. Las versiones mas pequeñas (Unimate 1000 y 2000) se utilizan en alimentación de maquinaria y manipulación.
Puma. Los robots Puma son la version electrica de los Unimate. Son articulares y existen varias versiones (Puma 260,560,761 y 762), utilizdas todas ellas en ensamblaje y manipulación.
10.2 Cincinnati Milacron
Es el fabricante mundialmente conocido por sus máquinas herramienta. A partir de 1981 comenzo a fabricar robots eléctricos similares a los de Unimation pero de menor capacidad de carga.
Actualmente tiene dos modelos en el mercado, el T3 y el HT3 (el segundo algo mayor que el primero). Ambos son utilizados en aplicaciones de soldadura y manipulacion.
10.3 ASEA
Esta firma es un ejemplo de que las tecnologías europeas no es nada despreciable. Asea fue una empresa dedicada inicialmente a la construcción de maquinaria eléctrica que, a finales de los 60, desarrollo un robot eléctrico para automatizar sus propios procesos de producción.
Posee una amplia gama de modelos (IRB 60, IRB 90,IRB 1000, etc.), todos ellos de tamaño medio o grande y, por su versatilidad, utilizados en casi cualquier tipo de proceso (mercanizado, fundicion, soldadura, manupulacion, etcétera).
10.4 Hitachi
Esta es una firma japonesa dedicada a una gran variedad de productos, en su mayoría electrónicos. Su división de robótica tampoco se ha queda atrás.
El modelo A 4010 comercializado por esta casa es un robot pequeño, de tipo Scara (coordenadas cartesianas) que se utiliza para manipulación y emsablajes precisos. El modelo Process no es tampoco demasiado grande, es de tipo articulado y se utiliza en el mismo tipo de procesos que el anterior.
11. Aplicaciones industriales
Un Robot industrial es un manipulador automático reprogramable y multifuncional, que posee ejes capaces de agarrar materiales, objetos, herramientas mecanismos especializados a través de operaciones programadas para la ejecución de una variedad de tareas como se puede apreciar, estas definiciones se ajustan a la mayoría de las aplicaciones industriales de Robots salvo para las aplicaciones de inspección y para los Robots móviles (autónomos) o Robots personales.
Para Firebaugh un Robot es una computadora con el propósito y la capacidad de movimiento.


¿Qué es un Robot Industrial?


Un Robot industrial es una máquina que puede efectuar un número diverso de trabajos automáticamente mediante una programación informática previa. Se caracteriza por tener una estructura en forma de brazo mediante el cual puede usar diferentes herramientas o aprehensores situados como elemento terminal de éste. Además, es capaz de tomar decisiones en función de la información procedente del exterior.
El Robot industrial forma parte del progresivo desarrollo de la automatización industrial, favorecido notablemente por el avance de las técnicas de control por computadora, y contribuye de manera decisiva la automatización en los procesos de fabricación de series de mediana y pequeña escala.
La fabricación en series pequeñas había quedado hasta ahora fuera del alcance de la automatización, debido a que requiere una modificación rápida de los equipos producción.
El Robot, como manipulador reprogramable y multifuncional, puede trabajar de forma continua y con flexibilidad. El cambio de herramienta o dispositivo especializado y la facilidad de variar el movimiento a realizar permiten que, al incorporar al Robot en el proceso productivo, sea posible y rentable la automatización en procesos que trabajan con series más reducidas y gamas más variadas de productos.


OBJETIVOS Y CONTEXTO

Objetivos más destacables de un Robot Industrial:
1.-Aumentar la productividad.
2.-Evitar la realización de trabajos pesados y repetitivos para el ser humano.
3.-Amortizarse rápidamente por sustitución de la mano de obra obteniendo, así, una mayor duración de las herramientas, más precisión en los trabajos realizados, menos pérdida de material y reducido mantenimiento.
4.-Realización de tareas en condiciones y ambientes peligrosos para el ser humano (hostiles, a muy altas o muy bajas temperaturas, en otros planetas, etc.).
12 Contexto actual de la Robótica
En el contexto actual la noción de Robótica implica una cierta idea preconcebida de una estructura mecánica universal capaz de adaptarse, como el hombre, a muy diversos tipos de acciones y en las que concurren, en mayor o menor grado según los casos, las características de movilidad, programación, autonomía y multifuncionalidad.
Pero en sentido actual, abarca una amplia gama de dispositivos con muy diversos trazos físicos y funcionales asociados a la particular estructura mecánica de aquellos, a sus características operativas y al campo de aplicación para el que se han concebido. Es además evidente que todos estos factores están íntimamente relacionados, de tal forma que la configuración y el comportamiento de un Robot condicionan su adecuación para un campo determinado de aplicaciones y viceversa, y ello a pesar de la versatibilidad inherente al propio concepto de Robot.


La construcción de un Robot

La construcción de un Robot, ya sea una máquina que camine de forma parecida a como lo hace el ser humano, o un manipulador sin rostro para una línea de producción, es fundamentalmente un problema de control. Existen dos aspectos principales: mantener un movimiento preciso en condiciones que varían y conseguir que el Robot ejecute una secuencia de operaciones previamente determinadas. Los avances en estos dos campos (el primero es esencialmente un problema matemático, y el segundo de tecnología) suministran la más grande contribución al desarrollo del Robot moderno.
Los manipuladores propiamente dichos representan, en efecto, el primer paso en la evolución de la Robótica y se emplean preferentemente para la carga-descarga de máquinas-herramientas, así como para manutención de prensas, cintas transportadores y otros dispositivos.
Actualmente los manipuladores son brazos articulados con un número de grados de libertad que oscila entre dos y cinco; cuyos movimientos, de tipo secuencial, se programan mecánicamente o a través de una computadora. Los manipuladores no permiten la combinación simultánea de movimientos ni el posicionamiento continuo de su efector terminal.
A pesar de su concepción básicamente sencilla, se han desarrollado manipuladores complejos para adaptarlos a aplicaciones concretas en las que se dan condiciones de trabajo especialmente duras o especificaciones de seguridad muy exigentes.

                                                                                                                                                                                                                                                                                                 

Robots de última generación


La empresa Sega Toys Ltd. anunció que presentará el 1 de abril un perro Robot, mucho más barato que el de Sony Corp. El Robot de Sega se llamará Poo-Chi y será menos complejo que el AIBO de Sony. Por otra parte, costará el equivalente a 28 dólares mientras que el precio del AIBO era de 2.500 dólares.
Poo-Chi tiene menos capacidad de aprendizaje y menos sensibilidad. Pero responde a la luz, al tacto y el sonido. Un visor colocado en el lugar en que estarían los ojos de un perro verdadero muestra formas diferentes para indicar "estados de ánimo". El "perrito" mide 17 centímetros y pesa 365 gramos, y es alimentado por baterías. Sega espera vender en un año en Japón un millón de unidades.
Como precedente, los 5.000 AIBO que fabricó Sony, a pesar de su precio, se vendieron en cuestión de días. Sony hizo 10.000 más y los vendió durante un "programa de adopción" de una semana en noviembre.



Cuando las Máquinas Imitan a los Hombres



Si bien el hombre ha buscado crear máquinas que puedan realizar las mismas tareas que él, ahora su meta va más allá: lograr que éstas no sólo reproduzcan conductas inteligentes, sino que lo hagan utilizan-do los mismos principios que se han descubierto en los seres vivos y en particular en el hombre.

Esta ciencia llamada Robótica etológica o fisiológica pretende que la naturaleza indique los caminos. Estos Robots permiten a los investigadores entender algunas funciones imposibles de desentrañar directamente a través de la experimentación animal.

Anexo

1. Asimo, el androide de Honda
ASIMO: ¿Por que crear un robot humanoide?
El lanzamiento de un robot capaz de moverse, interactuar con los seres humanos y ayudarles es, sin duda, una de las mayores proezas tecnológicas del siglo XIX.
El compromiso a largo plazo de Honda en el desarrollo de robots humanoides se inició hace dos décadas, y ha sido motivado por el deseo de sus ingenieros de responder a un desafío mecánico y técnico excepcional en el ámbito de la movilidad.
Honda creó su primer robot andador en 1986. El ambicioso programa que siguió a esta creación corresponde perfectamente a la filosofía Honda: esforzarse por explotar los potenciales de la tecnología punta a fin de mejorar el día a día de las personas.
El objetivo de Honda es crear un robot humanoide capaz de interactuar con las personas y de ayudarles haciéndoles la vida más fácil y agradable. Aunque todavía estamos lejos de poder atribuir roles concretos a los robots humanoides, podrían utilizarse, por ejemplo, para ayudar e incrementar la autonomía de las personas con minusvalías y de las personas mayores. Evidentemente, todavía tienen que transcurrir muchos años hasta que se pueda cumplir este objetivo, pero algunas empresas de Japón ya utilizan los servicios de ASIMO para funciones promocionales como la recepción de visitantes.
Uno de los robots bipedos mas evolucionado del mundo
ASIMO (acrónimo de "Advanced Step in Innovative MObility") es considerado uno de los robots bípedos más evolucionados del mundo.
Para conseguir los movimientos de ASIMO, Honda ha estudiado y utilizado como modelo los movimientos coordinados y complejos del cuerpo humano. Las proporciones y la posición de las articulaciones de ASIMO se parecen a las de un ser humano y, en la mayoría de los aspectos, el robot realiza un conjunto de movimientos comparables a los nuestros.
Gracias a un nuevo sistema de movilidad avanzado que ha implantado Honda, ASIMO no sólo puede avanzar y retroceder, sino que también se desplaza lateralmente, sube y baja escaleras y se da la vuelta mientras anda. En este aspecto, ASIMO es el robot que mejor imita los movimientos de avance naturales de los seres humanos.
En la base de este sistema se encuentra el "avance inteligente", una aplicación de Honda que permite a ASIMO andar en tiempo real con unos movimientos muy suaves. Esta capacidad ha sido posible gracias a una función que permite que el robot prevea su próxima posición y adapte sus movimientos en consecuencia. Así, a semejanza de un ser humano que, al girar una esquina, se inclina para desplazar su centro de gravedad hacia el interior, ASIMO prevé los pasos que va a tener que realizar y ajusta su centro de gravedad de forma adecuada.
Esta capacidad de previsión de los próximos movimientos en tiempo real también le permite andar de forma continua. Para trazar una curva, no tiene que detenerse, pivotar y retomar la marcha. Puede realizar esta trayectoria con un solo movimiento suave e ininterrumpido.
ASIMO : hacia el robot inteligente
Además de los importantes avances realizados en el ámbito de la movilidad, el programa de investigación de Honda se ha concentrado en el desarrollo inicial de un comportamiento inteligente de ASIMO.
Honda define la inteligencia como la "capacidad de establecer estrategias de resolución de problemas para lograr un objetivo concreto mediante el reconocimiento, el análisis, la asociación y la combinación de datos, la planificación y la toma de decisiones". Honda es la primera en reconocer que ASIMO todavía dista mucho de tener todas estas capacidades, pero considera que se han realizado avances importantes.
Además de las capacidades cognitivas asociadas al sistema de "avance inteligente", las versiones de ASIMO que se están desarrollando en Japón cuentan con varias funciones inteligentes, entre las que destacan la capacidad de reconocer a personas, objetos y gestos, calcular las distancias y el sentido de desplazamiento de varios objetos.
Estas informaciones visuales se registran, interpretan y traducen en acciones. Gracias a estas funciones, ASIMO puede evitar los objetos que se encuentran en su camino, saber que alguien quiere darle la mano y actuar en consecuencia tendiéndole la suya.
En cierta medida, ASIMO también puede entender y hablar. Puede reconocer voces, distinguir sonidos y palabras, responder a determinadas instrucciones e intercambiar frases simples y saludos con una persona. Actualmente, ASIMO puede entender 50 saludos y tratamientos distintos, así como 30 instrucciones, y actuar en consecuencia.
Asimo: Novedades
Tokio, 15 de diciembre de 2004 --- Honda Motor Co., Ltd., ha anunciado hoy el desarrollo de nuevas tecnologías para el robot humanoide ASIMO de nueva generación, con las que quiere conseguir un nuevo nivel de movilidad que permitirá que ASIMO funcione e interactúe mejor con los seres humanos gracias a un rápido procesamiento de la información y una actuación más ágil en entornos reales.
Entre las tecnologías clave se encuentran las siguientes:
1) Tecnología "Posture Control" (control de postura) que hace posible correr de forma humana
La combinación de un hardware muy receptivo con la nueva tecnología "Posture Control" permite que ASIMO flexione el torso para mantener el equilibrio y evitar los patinazos y giros en el aire, que suelen estar vinculados a los movimientos rápidos. Actualmente, ASIMO puede correr a una velocidad de 3 km/hora. Asimismo, la velocidad de avance caminando ha pasado de 1,6 km/hora a 2,5 km/hora.
2) Tecnología "Autonomous Continuous Movement" (movimiento continuo autónomo) que permite una ruta flexible hacia el destino
El ASIMO de nueva generación puede maniobrar para acercarse a su punto de destino sin tener que detenerse para comparar la información del mapa de input con la obtenida de la zona en la que se encuentra mediante el sensor de superficie de suelos. Además, ASIMO puede modificar autónomamente su ruta cuando dicho sensor de superficies y los sensores visuales situados en su cabeza detectan obstáculos.
3) Tecnologías de sensor visual y de fuerza mejoradas para una mejor interacción con las personas
Al detectar los movimientos de las personas mediante los sensores visuales situados en su cabeza y los sensores de fuerza (quinestésico – kinesthetic*****) que se acaban de añadir a sus muñecas, ASIMO puede moverse en sincronía con las personas y puede dar o recibir un objeto, dar la mano de forma acorde con el movimiento de la persona y avanzar o retroceder como respuesta a la dirección en que se tira de su mano.
Especificaciones técnicas clave del nuevo modelo:
1. Velocidad al correr: 3 km/hora (tiempo en el aire: 0,05 segundos).
2. Velocidad normal al andar: modelo actual, 1,6 km/hora; nuevo modelo, 2,5 km/hora.
3. Altura: 130 cm (modelo actual: 120 cm).
4. Peso: 54 kg (modelo actual: 52 kg).
5. Tiempo de funcionamiento continuo: 1 hora (modelo actual: 30 minutos).
6. Grados de libertad en funcionamiento: 34 grados de libertad en total (modelo actual: total, 26).
- Articulación de rotación de cadera: Se ha conseguido una mayor velocidad al andar gracias a la rotación proactiva de las caderas, además del balanceo de los brazos, que contrarrestan la fuerza de reacción que se genera cuando las piernas avanzan al correr o andar.
- Articulación de flexión de la muñeca: Dos ejes adicionales en cada muñeca permiten que el movimiento de la zona de la muñeca sea más flexible.
- Articulación del pulgar: Antes, los cinco dedos funcionaban con un mismo motor. Ahora, con la adición de un motor que acciona el pulgar de forma independiente, ASIMO puede sostener objetos de varias formas.
- Articulación del cuello: Se ha mejorado la expresividad de ASIMO utilizando un eje adicional en la articulación del cuello.